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For the stochastic equation U = VU, Kubo's ansi~tze for ( U )  in the form of dif- 
ferential and integrodifferential equations is investigated and a new ansatz as an 
integral equation is added. Unique solutions in terms of noncommutative 
W- and K-cumulants are found by elementary functional differentiation, and 
expressions of van Kampen and Terwiel are recovered. For the cumulants we 
find simple recursion relations and prove the important cluster property. Sur- 
prisingly, it is found that the Gaussian approximation in the differential 
equation ansatz leads to positivity problems, while this is not the case with the 
integral and integrodifferential equation. The cumulant expansion technique is 
carried over to generalized Dyson series. In a companion paper we apply our 
results to quantum shot noise. 

KEY WORDS: Stochastic differential equations; noncommutative cumu- 
lants; positivity problems. 

1. I N T R O D U C T I O N  A N D  M A I N  R E S U L T S  

Let  V(t), for real  t, be a r a n d o m  m a t r i x  or  ope ra to r ,  i.e., of  the form 
V(t; co), where  co ranges  in  a p r o b a b i l i t y  space over  which  one  has  to 

average.  In  m a n y  app l i ca t i ons  s tochas t ic  differential  e q u a t i o n s  of  the fo rm 

d 
dt U(t, to)= V(t) U(t, to), U(t, to) = 1 (1.1) 

arise, a n d  one  is in te res ted  in  the average  ( U ( t ,  to)) and ,  in  some  cases, in  
its F o u r i e r  t r ans fo rm.  O n l y  rare ly  can  this be  ca l cu la t ed  explicit ly,  a n d  

m a n y  a p p r o x i m a t i o n  t e chn iques  have  been  devised (cf., e.g., Ref. 1). The  
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tempting idea to use the Dyson series for U(t, to) is in general not 
appropriate if one needs (U(t, to)) for large t, as in the Fourier trans- 
form, since there appear so-called secular terms growing like t n if 
(V( t l ) . . .  V(tn)) does not decay in the difference variables. 

Kubo (2) advanced two interesting proposals, an ansatz for an 
integrodifferential equation and an ansatz for a differential equation for 
(U(t, to)); see ansatz (ID) and ansatz (D) below. Each ansatz leads to new 
types of cumulants and to an expansion of {U(t, to)) in terms of them. 
Kubo calculated the lowest cumulants for both cases. 

Van Kampen (3) systematically investigated the differential equation for 
(U(t, to)) and found a solution for the cumulants to all orders with quite 
involved combinatorics; see also FoxJ 4) 

Terwiel (5) did not start from an ansatz, but used the projection 
operator technique of Mori (6) and Zwanzig (v) to construct directly an 
integrodifferential equation for (U(t,O)). He also noted that his 
cumulants, which are different from those of van Kampen, satisfy the 
important cluster property to be discussed later. His derivation assumes 
that (V(t))  _= 0. 

In this paper we reconsider ansatz (ID) and ansatz (D) of Kubo, add 
an additional ansatz (I) in the form of an integral equation, and then 
extend them to generalized Dyson series. We clarify the conditions under 
which the respective kernels are uniquely determined by the ansatz and 
derive by elementary functional differentiations, without heavy com- 
binatorics, compact expressions for them. From this, the original 
expressions of van Kampen and of Terwiel are recovered. If one has 
(V( t ) )  r O, ansatz (ID) and the expression of Terwiel have to be modified. 
Furthermore, we show that ansatz (I) and ansatz (ID) lead to the same 
cumulants and that the general expressions for the kernels are very simply 
related. 

Thus we consider ansgttze (I), (ID), and (D) given by 

ft t (I) (U(t, t o ) ) = l +  dsGi(t ,s)(U(s,  to)) 
o 

d fj 
(ID) ~ (U(t, to)) = ds C~D(t, s)<U(s, to)) 

o 

d 
(D) ~-~ (U(t, to) ) =KD(t, tol(U(t, to) ) 

It is clear that without further assumptions the kernels are not uniquely 
determined. For example, ansatz (D) may be integrated to give an integral 
equation of the form (I). 
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The main idea, implicit in the work of Kubo, is that (a) the kernels 
should be given by algebraic expressions in V which are independent of the 
particular form of V, i.e., by analytic functionals of V( .); (b)the kernels 
should depend only on values of V(.) for times in the intervals Is, t] and 
[to, t], respectively. 

In Section 2 we show that under these two assumptions G~ is uniquely 
determined in terms of a specific type of noncommutative cumulants ( . ) w .  
The GI is given by a time-ordered exponential, 

G~(t,s)=(Y- {explf[ V(t')dt']} V(s)) w 

- ~ fj dtl s dr2.., fj"'dtn(V(tt)...V(t.)V(s)>w (1.2) 

With the abbreviation 

(V(t,)... V(tn) ) = ( 1 . . . n )  (1.3) 

and similarly for ( - )  w, the W-cumulants are given by ( 1 ) w = ( 1 ) and by 
the recursion relation 

1 

( 1 - . . n > =  ( 1 . . . n ) W +  ~ (1...i)w(i+l...n> (1.4) 
i = n - - I  

The W stands for von Waldenfelds, in whose paper r we first met these 
cumulants explicitly, in a somewhat different context. For the lowest 
W-cumulants one easily finds from Eq. (1.4) 

( 1 2 ) w =  ( 1 2 ) -  ( 1 ) ( 2 )  

(123)  w =  ( 1 2 3 > -  ( 1 2 ) ( 3 ) -  ( 1 ) ( 2 3 )  + ( 1 ) ( 2 ) ( 3 )  

(1234)w = ( 1 2 3 4 ) -  ( 1 2 3 ) ( 4 ) -  ( 1 2 ) ( 3 4 )  - ( 1 ) ( 2 3 4 )  

+ ( 1 2 ) ( 3 ) ( 4 )  + ( 1 ) ( 2 3 ) ( 4 )  + ( 1 ) ( 2 ) ( 3 4 )  

- ( 1 ) ( 2 ) ( 3 ) ( 4 )  

A closed formula is given in Eq. (2.16). These W-cumulants differ from the 
ordinary ones even in the commutative case. It is seen that in their 
definition time-ordering is completely preserved. 

Thus, (U(t, to)) obeys the integral equation 

t ( {  [~[ exp ]}  ) w  (U(t, to))=l+o,f ds ~-- V(t')dt' V(s) (U(s, to)) (1.5) 
0 

822/51/3-4-24 
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from which one obtains approximations by retaining only the first few 
terms for G~ in Eq.(1.2). In the stationary case Eq.(1.5) and its 
approximations are solved by Laplace transform [cf. Eq. (2.17)]. The time 
derivative of Eq. (1.5) is 

d 
dt (U(t, to))= (V(t))(U(t, to)) 

+ f,'odSIV(t)J {explf  ~ (U(s, to)) 

(1.6) 

which is an integrodifferential equation for (U(t, to)). For (V( t ) )  -0  the 
first term is absent, and the equation becomes a compact form of Terwiel's 
expression. For ( V ) ~  0 the ansatz (ID) in its above form clearly has no 
solution, since for t = to the rhs vanishes, while the lhs equals (V(to)).  We 
show in Section 2 that Eq. (1.6) is the unique solution for its extension to 
the case ( V )  r 0. 

In Section 3 we give a short proof by elementary functional differen- 
tiation for the unique form of KD in terms of K-cumulants ( - ) ~  (K after 
van Kampen). Ansatz (D) becomes 

(1.7) 

where the expression for KD is to be understood similarly as in Eq. (1.2). 
The K-cumulants are given by ( 1 ) K =  ( 1 )  and by the recursion relation 

(1 . . . n ) -=  (1 . . . n )  ~ 

+ 2 
{i1< ---<i~}~ (jl < ..-<is}= (2,...,~} 

( t i l " ' ' i r )  K (Jl"''J~) 

(1.8) 

where r + s = n - 1  and r >~ 0, s/> 1. This relation seems to be new for the 
noncommutative case; for commuting expectations see Ref. 9. One easily 
calculates from Eq. (1.8) 

(12)K= (12 ) - -  ( 1 ) ( 2 )  = (12 )  w 

(123)K = (123)  -- ( 1 2 ) ( 3 ) - -  ( 1 3 ) ( 2 )  -- ( 1 ) ( 2 3 )  (1.9) 

+ ( 1 ) ( 2 ) ( 3 )  + ( 1 ) ( 3 ) ( 2 )  

In Section 3 a closed formula for (1 ... n)K is given, which is equivalent to 
the prescription of van KampenJ 3~ With this identification the differential 
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equation for (U) ,  Eq. (1.7), becomes a compact form of van Kampen's 
result. Another type of cumulant closely related to K-cumulants was used 
by Roger. (1~ 

In Section 3 we prove the cluster property for K-cumulants, which was 
not mentioned in Ref. 3. The cluster property means that if V(tl),..., V(tn) 
splits into two statistically independent clusters V(tl)  ..... V(tm) and 
V(t,,+~) ..... V(tn) so that (V(tl).-' V(tn) ) factorizes, then the cumulant 
vanishes. 

The cluster property is crucial for approximations to the formally 
exact equations (1.5)-(1.7). In many applications this statistical indepen- 
dence holds at least asymptotically for sufficiently large time separation of 
the clusters, and so the cumulants will go to zero in the difference variables. 
If this decrease is sufficiently rapid, one can hope to get a good 
approximation of the time-ordered exponential with the first few 
cumulants. In first-order approximation the integral and differential 
equations give the same result. The second-order approximation will be 
called W- and K-Gaussian approximation, respectively. In this context 
certain nonpositivity problems arise already for the K-Gaussian 
approximation, to be discussed in Section 4. 

In Section 5 we show that the above procedures of cumulant expan- 
sions can be carried over from stochastic differential equations to 
expressions given by generalized Dyson series; cf. also Ref. 11. To motivate 
this, we note that the solution U(t, to) of Eq. (1.1) can be written as a 
Dyson series, and hence 

( U(t, to))  = 1 + dtl d t2 . . ,  dt ,  ( V(l 1 )--- V(tn) ) 
n = l  0 0 0 

(1.10) 

In applications one sometimes meets generalized Dyson series of the form 

i f / f / '  i?' F(t, to)= 1 + dt I d t2 . . ,  dt ,  f~(t l  ..... t , )  (1.11) 
n = l  0 0 

where the fn are matrix- or operator-valued functions, which may arise 
from averages of nonproduct expressions. Abbreviating 

fn( t l  ..... t , )  == - (1 . . . n )  

one can define W- and K-cumulants 

f w ( t ,  ..... t . ) ,  K f ,  (ta,..., tn) 
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in exactly the same way as before by the recursion relations (1.1) and (1.8); 
for example, 

w t  f2 ( 1 ,  t2)= f2(tl t2) -  f l ( t l )  f ( t 2 ) -  K t - f 2  ( 1, t2) 

fw( t l ,  t2, t3)= fa(t l ,  t2, t3)--fl(tl)f2(t2, t3) 

- f2(tl ,  t 2 ) A ( t 3 ) + f l ( t l ) A ( t 2 ) f l ( t 3 )  

and so on. One has again the cluster property, i.e., i f f ,  factorizes, e.g., due 
to independence of two clusters, then f w  and f ~  vanish. 

The integral equation (1.5) generalizes to 

ft 
t 

F(t, to) =- 1 + ds GDy(t, s) F(s, to) (1.12) 
o 

with 

c i , , ( t , s ) = A ( s ) + ~  & l . . .  at, fw§ 

- f--s FW(t' s) (1.13) 

The differential equation carries over as 

d 
F(t, to) --- KDy(t, to) F(t, to) (1.14) 

with 

KDy(t, to) = A( t )  + ... dr, f~,+ l(t, tl ..... t,) 
1 0 

8 K 
- ~5 F (t, to) (1.15) 

Again the hope is that, due to the cluster property, the cumulant expan- 
sions for Goy and Koy converge much more rapidly than the original series 
in Eq. (1.11) and that it is sufficient to retain only the first few terms. 

In the Appendix we show how the cumulant expansions fit into a more 
general nonprobabilistic framework and indicate algebraic and power series 
techniques to deal efficiently with the combinatorics. 
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In a companion paper we apply our present results to quantum shot 
noise. In this case the noncommutative cumulant expansions turn out to 
allow partial summations, which result in expansions in powers of the pulse 
density v. Also in preparation are applications to the theory of spectral-line 
broadening. 

2. THE INTEGRAL EQUATION FOR (U) AND W - C U M U L A N T S  

2.1. Derivation of the integral equation 

The stochastic differential equation (1.1) resembles a Schr6dinger 
equation, with a possible i absorbed in V. We will call V(t) the "potential," 
By assumption (a), ansatz (I) holds for all potentials, in particular also for 

vh(t) : =  h(t) v(t) 

where h(t) is a scalar function. By assumption (a), the kernel GI must be a 
formally analytic expression in h( �9 ), where, by assumption (b), only values 
of h for times between s and t enter. Furthermore, because of the factor ds, 
it follows for dimensional reasons that Gx must contain an explicit factor 
h( s ) .  3 

Hence GI has the general form 

G,(hV; t, s)=h(s) ~ dz~.., dz~ 
n = O  

X Kn(V; t, t I ..... tn, s ) h ( t l ) . . . h ( t , )  (2 .1 )  

We note that powers of h(ti) cannot appear, because such powers appear 
neither in (U(t, to)) nor in (U(s, to)). Symmetrizing x, in tl ..... tn, we can 
write the rhs of Eq. (2.1) as a time-ordered integral in the form 

[ ~  1 fS !n-I G i ( h V ; t , s ) =  n~=Of~ dtl d t2 . . ,  dt ,  

x k,(V; t, tl,..., G,s) h(tl)'"h(tn)]h(s) (2.2) 

3 This also results from a simple scaling argument by scaling the time according to dr' = h(t) dt 
and considering the stochastic differential equation and ansatz (I) with a t' derivative. 
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Now we employ straightforward functional derivatives. Let t >  
sl > ""  > s, > t o. We consider ansatz (I) with potential hV and apply 4 

fi (2 .3)  ~ h ( s [ ) l l l ~ s . )  ~ 0  

to both sides. Now the crucial point is that because of the appearance o f  
the explicit factor h(s) in GI, one of the functional derivatives, with si say, 
has to hit h(s), producing 6(s -s i ) ,  since otherwise the contribution would 
vanish after setting h = 0 .  Then, because of the time ordering, the 
derivatives with times earlier than si apply to (U(s, to)) only and the later 
ones to G I only. The 3-function eliminates the integral over s, and with the 
Dyson series for (U(t ' ,  to)) and with Eq. (2.2) we obtain 

( V(Sl). . .  V(s ,))  = ko_ 1( V; t, s~,..., s~) 

+ k,_2(V; t, sl,..., s , _ O ( V ( s , ) )  + ... 

+ ko(V; t, s l ) (V(s2) . . .  V(s ,))  (2.4) 

This recursive relation for k, yields 

ko(V; t, sl) = (V(Sl))  

kl(V; t, s~, s2)= (V(Sl) V(s2)) - ( V ( s l ) ) ( V ( s 2 ) )  

which is (V(sl) V(S2)) w. Indeed, the recursion relation (2.4) is the same as 
that in Eq. (1.4), and it is seen immediately that k,_~(V;t ,s~ ..... Sn) is 
uniquely determined, does not depend on t, and is a multilinear function of 
V(sl),..., V(s,). We may therefore put 

( V ( s l ) . . . V ( s , ) ) W  :=k,  l(V;t, sl,...,s,) (2.5) 

4 The only fact needed is the formula 

6 
- - h ( t ) = f ( t - t ' )  
6h(t') 

Then all functional derivatives can be pulled under the integral signs, and the usual differen- 
tiation rules hold. In particular, for t > sl > ... >Sm ~ to one has 

Oh(s1) dtl  d t2 . . ,  d t ,  f ( t l  ..... t ,)  h(ta)-. ,h ( t , )  
* to to 

= 6rim f ( sx  ..... Sin) 
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and Eq. (2.4) becomes Eq. (1.4). Inserting Eq. (2.5) into Eq. (2.2), we 
obtain for h -= 1, using the multilinearity of ( - ) w ,  

Gx(V;t,s)= ~ ff dt~ ff'dt=...fs'~ 
n=0 

X ( V ( / 1 ) ' ' - V ( t n )  V ( s ) )  w 

= l S { e x p l f j V ( t ' ) d t ' ] } V ( s )  ) 

(2.6) 
W 

(2.7) 
 tl) w 

- 6 s I J - e x p [ I f V ( t ' )  

Hence, tf (U(t, to)) satisfies an integral equation as in ansatz (I), the ker- 
nel is given by Eq. (2.7). To show the converse, that the integral equation is 
indeed satisfied, we give two alternative arguments. The pedestrian way is 
to integrate Eq. (1.4) over t > tl > .. .  > t, > to and to sum over n. The lhs 
then becomes (U(t, to)), and on the rhs one can regroup terms and make 
a change of integration variables to obtain in Eq. (1.5). 

A more elegant way is as follows. We replace V by hV, use Eq. (2.6) 
for az(hV; t, s), and insert the Dyson series (1.10) for (U(s, to)). The rhs of 
Eq. (1.5) then becomes a sum over products of two time-ordered integrals. 
Taking care of the integration domains by step functions, these integrals 
can be written as multiple integrals from to to t. Hence the rhs of Eq. (1.5) 
can be written, with h V replacing V, in the form 

+ dte.., dtmqm(V;tl,...,tm)h(tl)...h(tm) (2.8) 
rn=l 0 0 

Symmetrizing qm in tl . . . . .  tin, we can write this with time-ordered integrals 
as 

1 + dr1 dr2 dtmm! s . q m ( V ,  t 1 ..... tin) h ( t l ) "  . h ( t m )  (2.9) 
m= 1 0 0 ~ 

The functional derivatives of this at h 0 yield m! s = qm, rn = 1, 2 ..... which 
therefore coincide with the functional derivatives of the original expression, 
i.e., 

rn! qS= (V(t l ) . . .  V(t ,))w + ~  (V( t l ) . . .  V(tj))w ( V ( t j + l ) . . . )  
J 

= ( V( /1 ) - - .  V ( t n )  ) (2.10) 

where the second equality comes from Eq. (1.4). Thus, the expression in 
Eq. (2.9), with h -  1, equals (U(t, to) ). 
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2.2. Cluster Proper ty  

This property is already implied by the integral equation. Indeed, if the 
values of the potentials for times smaller than some tc are independent of 
those for times greater than to, then one has for t/> s > t~ > to 

( U(s, to))= ( U(s, tc) )(  U(tc, to) ) (2.11) 

Splitting the ds integral in Eq. (1.2) into one from t o to t c and one from to 
to t and inserting Eq. (2.11 ), one immediately finds 

(U(tc, to) )= l + !,iCds ( J  {exp lff  dt' V(t')l} V(s))W (u(s, to) ) 

(2.12) 

Since this also holds with V replaced by h V, identically in h, the kernel can- 
not depend on hV values for times larger than tc. Hence 

(V(tl). . .V(G))w=o if tl>tc>t~ (2.13) 

The cluster property also follows easily from the recursion relation 
(1.4) by induction on n as follows. If V(tl) ..... V(tm) and V(tm+l) ..... V(t,) 
are independent, then 

( 1 . . . m ) ( m + l . . . n ) = ( 1 . . . n )  

= ( 1 . . . n ) W +  

For  n = 2, (V( t l )  V ( t 2 ) ) w = 0  if one 

1 

(1. . ' i )w (i+ l " . n )  
i = n - - i  

(2.14) 

has two independent clusters. We 
assume this to hold for n -  1. Then the sum in Eq. (2.14) is only from m to 
1, and ( i +  1 - - , n )  factorizes. Hence, the rhs becomes 

(1 . - -n)W + (1 . . .m)(m+ 1 ...n) 

which implies ( 1 ... n ) w = 0. 

2.3. Formula for  W - C u m u l a n t s  

It may seem from Eq. (1.4) or (2.4) and (2.5) that W-cumulants are 
defined for tl > --. > t,  only. This is not so. Any sequence A1, A2 .... of ran- 
dom operators or matrices can be considered to define a piecewise constant 
potential, and so (A1 . . -An)  w may be defined by Eq. (1.4). To give a 
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closed expression for ( - ) w ,  we consider "intervals" I of integers, I =  
{ l, l + 1 ..... r }, and put 

(A,A++I . . - A t ) = :  ( I )  (2.15) 

Similarly for ( i ) w .  Furthermore, 11 o12 denotes union of adjoining inter- 
vals, i.e., 

Ix={lx  ..... rl}, 12= { r l + l  ..... r2} 

11 oi2 = {11 ..... r2} 

Then one has (8'12) 

(i)w= ~ ( - -1)  ~ ~(Ij)...(I,~) 
11 . . . . .  1~:= I 

(2.16) 

where the sum is over all partitions of I into adjoining nonempty intervals. 
This is easily proved directly by induction; it also follows from Eq. (A.19). 

It is apparent from the rhs of Eq. (2.16) that the ordering is completely 
preserved. 

2.4. Stat ionar i ty  of W - C u m u l a n t s  

If the process V(t) is stationary, then it is seen from Eq. (2.16) that its 
W-cumulants depend on time differences only. The same then holds for the 
kernel GI, so that the integral equation (1.5) as well as its approximations 
can be solved by Laplace transform, 

LPp{ ( U(t, O)) } = (p - p~p{G })-1 (2.17) 

2.5. The Integrodi f ferent ia l  Equation 

It is seen for t=to  that ansatz (ID) can only hold for ( V ( t 0 ) ) = 0 .  
Assuming, therefore, first that ( V ( . ) ) - 0 ,  one easily shows by the 
previous techniques that GXD is uniquely determined by assumptions (a) 
and (b) and that one obtains Eq. (1.6) with the first term on the rhs omit- 
ted. Due to noncommutativity, subtracting or adding the expectation value 
( V ( . ) )  is not quite so trivial as in the classical commutative case. Here 
one has to consider the analog of the quantum mechanical interaction 
picture. Doing this and using the cluster property, one arrives after some 
calculation at the full equation (1.6). 

One can of course also show the validity of Eq. (1.6) directly and very 
easily by the same arguments as in Eqs. (2.8)-(2.10). 
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Remark. We note that for the uniqueness of G I and GID only part of 
assumption (a) of Section 1 was needed, since only the potentials Vh(t)= 
h(t) V(t) entered, with V(t) fixed. Also, the expectation or average ( . )  was 
fixed in the discussion. 

3. K - C U M U L A N T S  A N D  THE DIFFERENTIAL EQUATION 
FOR ( U )  

3.1. Der ivat ion of the d i f ferent ia t ion  equat ion 

Finding the kernel KD for ansatz (D) by functional differentiation is 
even simpler than for the integral equation. Again we replace V by h V. 
Then on the lhs of ansatz (D), h(t) appears as a factor and hence it appears 
also as a factor on the rhs. We proceed as in the step from Eq. (2.1) to 
Eq. (2.2) to go from a multiple time integral to a time-ordered integral, by 
symmetrization, and obtain from ansatz (D) an equation of the form 

h(t)( v(t) U(hV; t, to)) 

= h(t) dt2.. ,  dtn 
n 0 0 0 

tl,..., t,, to)h(t l) . - .h(tn)]  (U(hV; t, to) ) X ]~n(/, 
J 

(3.1) 

We divide by h(t), put t - s ~ ,  and apply, for t = s ~ > s 2 > . . .  > s n > t o ,  
n~>l, 

6 6 

6h(s2)" 6h~,) h=o 

As opposed to Eq. (2.2), there is now no time ordering between the two 
factors on the rhs of Eq. (3.1). Therefore, the Leibnitz rule for multiple 
derivatives of a product gives 

(V(s1)- ' -V(sn)  ) 

=k~ l(Sl ..... sn, to) 

+ 2 
{h< --" <ir}~v {jl< .-. <Js}= {2,..., ~} 

k n _ r ( S l ,  Sil,..., s i  r) 

x ( V(sj,)... v(sj,)) (3.2) 
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where r + s = n - 1 and r >~ 0, s ~> 1. The symbol c~ denotes union of disjoint 
sets. Disjointness is automatically fulfilled due to the conditions on r and s. 
This recursive relation determines /~n uniquely, and it is a multilinear 
function in the V's, independent of to, so that we may define 

( V ( s l ) . . .  V(s,) ) K :=~,  l(Sl,...,sn, to) (3.3) 

Then Eq. (3.2) is identical to Eq. (I.8). Inserting Eq. (3.3) into Eq. (3.1) 
and using the multilinearity of ( . ) K ,  we obtain for h - 1 

KD(V; t, to)= dt~ dt2.., dt, 
n = 0 0 0 to 

x <v(t) v(t l )---v(t , )> ~ 

( If: = V( t )Y  exp dt' V(t') (3.4) 
o 

Conversely, with the same procedure of functional differentiation as in 
Eqs. (2.8)-(2.10), it is immediately seen that ansatz (D) is indeed fulfilled 
for this form of KD. The pedestrian way of integrating the recursion 
relation (1.8) or (3.2) in a time-ordered way, i.e., over t > s2 > --- > s, > to, 
and summing over n becomes very tedious in this case. 

3.2. C lus ter  P r o p e r t y  

As for W-cumulants, the cluster property for ( .  ~K is already implied 
by the differential equations. To see this, let the values of the potential for 
times above tc be independent of those for times below to. Then, for 
t> tc>to ,  

<v(0 u(t, to)> = <v(0 u(t, to))< u(tc, to)> 

From this one obtains with Eq. (1.7) 

( If' , ] /  (V(t)  U(t, tc))= V(t)~-- exp V(t') (U(t, tc)) (3.5) 
L"  to 

Since this also holds with V replaced by h V, identically in h, the kernel 
cannot depend on hV values for times smaller than t c. Hence 

(V( t l ) . . .V ( tn ) )K=O if t l> tc>tn  (3.6) 

One can also prove the cluster property with the recursion relation 
(1.8) and induction, as in Eq. (2.14). 
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3.3. Formulas for K-Cumulants 

Let Vi, i = 1, 2 ..... be random operators or matrices. Then, by a simple 
argument (cf. Appendix), one has in the sense of formal power series 

(Vl'-' V~) K = - "  6 66x. 
O X 2  x = 0 

x ((VleX2V2...eX"V")(ex2V2...eX"V") -1) (3.7) 

In the Appendix we use this to discuss the relationship between 
K-cumulants and ordinary (commutative) cumulants. 

For higher n the evaluation of Eq. (3.7) becomes tedious. For an alter- 
native expression we consider sets of integers A = {21 < 22 < .. .  < ~'r} and 
introduce, as in Eq. (2.15), the abbreviations 

( A ) : =  (V~ ..-V~r), ( A )  K := (V~, ... Vx,) K (3.8) 

In the Appendix we show more elegantly, without Eq. (3.7), 

( A ) K =  ~ (--1) '-1 (A1)  -.- ( A , )  (3.9) 
A I ~ . . . ~ A I = A  

).I ~ AI ,A i  ~ ~ 

The summation is over all tuples {A 1 ..... An} arising from partitions of A 
into disjoint subsets, with 21eA1. Note that, for example, with 
{A1, A2, A3} also {A1, A3, A2} appears in the sum. Proof is by induction 
or as in the Appendix. A close look at the paper of van Kampen (3) shows 
that Eq. (3.9) agrees with his prescription for the cumulant construction. 

In contrast to the W-cumulants, the K-cumulants preserve time order- 
ing only in a restricted sense. Within each ( A i )  the operators are ordered, 
but, for example, (A t )  may contain II2. This break of time order is related 
to the nonpositivity aspect discussed in the next section. 

Stationary. If the process V(t) is stationary, then, by Eq. (3.9), the 
K-cumulants depend on time differences only. 

4. POSITIVITY PROBLEMS FOR THE GAUSSIAN 
A P P R O X I M A T I O N  

In this section we assume ( V ( t ) ) = O .  Then the simplest 
approximation in the integral and differential equations is to retain only 
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the second cumulants in the expansion of the kernels so that, in second 
order in V, 

~2~(t,s)= dtl (v(t,) v(s)) 

(4.1) 

f; K(D2)(t, to)= dt 1 ( V ( t )  V(tl) ) 
o 

For ( U )  one obtains two in general different approximations, one from 

ft t (U(t, to))~ 2~= 1 + ds G[2)(t, s)(U(t, to))~ 2) 
o 

and the other from 

(4.2) 

d 
at ( v(t, to) ) ~  = K~(t, to)(V(t, to) ) ~  (4.3) 

We will call these the W-Gaussian and K-Gaussian approximations, 
respectively. 

In the c-number commutative case it is well known that, due to the 
Marcinkiewicz theorem, (~3'9) one obtains negative parts in the supposedly 
positive measure if one terminates the cumulants at some N/> 3, while the 
Gaussian approximation is acceptable in this respect. 

In the noncommutative case, however, already the K-Gaussian 
approximation leads to a related positivity problem. An elementary way to 
see this is as follows. Let V be skew-Hermitian, so that U(t, to) is unitary. 
Then 

({ }*) Z2,2j(U(t,,tj))= Z 2~U(tg, O) 2jU(tj, O) >~0 

In the stationary case one has 

( U(ti, tj) ) = ( U ( t i -  tj, 0 ) )  

(4.4) 

so that (U(t, 0))  is a positive-definite function, or equivalently, its Fourier 
transform is positive. This positivity is violated by the K-Gaussian 
approximation in the noncommutative case, as indicated by the following 
argument. The 2nth moment of the Fourier transform is positive and 
equals, up to a sign, the 2nth derivative of (U(t, 0))  at t = 0 .  Hence 

d2n t =o (-- 1)" d--- ~ (U(t,O))>~O 
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We denote ~("):= (V(")(0) V(0)) and calculate 

d 6 
(-1)3~-~ (U(t,  0) )~  )= __((~(4)_1_ 101~[jrt(/j._[ - 10q~,2+ 5~b , ,+  15~i3) (4.5) 

Now, it is easy to see by stationarity that ~(4), ~tt and ~ are Hermitian 
and that ~'  is skew-Hermitian. Hence, if ~b and qs" do not commute, then 
the expression in Eq. (4.5) is not Hermitian and, afortiori, not positive. It 
is not difficult to construct a process where this happens. 

For the W-Gaussian approximation this positivity problem does not 
occur. One can show that it always satisfies the positivity condition (4.5) 
for unitary U. Of course, if the K-Gaussian approximation is a good 
approximation, the positivity violation will in general be minor. 

The deeper reason for this qualitative difference is that the n-point 
correlation functions reconstructed via the W-recursion relation (1.4) from 
the second cumulants satisfy the usual positivity condition for moments, 
while in the noncommutative case the n-point correlation functions 
reconstructed via the K-recursion relation from the second cumulants do 
not satisfy this moment positivity condition. We briefly touch on this 
question in the Appendix. 

5. THE C U M U L A N T  EXPANSIONS FOR GENERALIZED 
DYSON SERIES 

The restriction to time-ordered integration in Eq. (1.11) is no loss of 
generality, since any expression of the form 

F(t, to)= 1 + ~  d t l . . ,  q,(tl ..... t,) (5.1) 
1 o 

can be written as a generalized Dyson series with fn the symmetrization of 
qn, just as in Eqs. (2.8), (2.9). 

We first consider the integral equation (1.12). Similar to Section 2, let 
F(h; t, to) be given by Eq. (1.11) with fn replaced by fnh( t l ) . . .h( t , ) ,  and 
analogously for GDy(h; t, s). By the same reasoning as in Section 2, GDy 
contains the explicit factor h(s) and has ' the same general form as in 
Eq. (2.2). Functional differentiation gives the analog of Eq. (2.4) with 
(V(si) . ."  V(s,))  replaced by f ,_ i+l(s i  ..... s~). This gives the recursion 
relation f o r f  w, and we obtain Eq. (1.13) for Goy. Sufficiency follows as in 
Eqs. (2.8), and (2.9), and the same remark on uniqueness as at the end of 
Section 2 about the partial use of assumption (a) applies. 
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In an analogous way one obtains the differential equation for F(t,  to), 
Eqs. (1.14) and (1.15), and the uniqueness of its kernel. For  a somewhat 
more involved derivation of Eqs. (1.13) and (1.15) see Ref. 11. 

APPENDIX.  C U M U L A N T S  FOR N O N C O M M U T A T I V E  STATES 
AS POWER SERIES 

A1. Introduction 

The conventional probabilistic context for cumulants is unnecessarily 
restrictive. The proper framework (14) is to consider a set d// of (abstract, 
noncommuting) elements ai, which replace V(ti). Polynomials in the ai as 
indeterminants form an algebra ~ (the free algebra generated by J t ) .  We 
assume an involution, a ~ a*, in J/{ which is extended to ~ / t o  make it a 
*-algebra. 

The expectation or average is replaced by an operator-valued state on 
~,, denoted interchangeably by m(-) or ( . ) .  A state is a linear functional 
on J/r that is positive on positive elements in J / / and  normalized, m(1 ) =  1. 
The values of m may also lie in some abstract *-algebra, which will be 
assumed fixed in the following. 

Let al ,  a2 ..... e J//. For  A = {21 < ..- < 2k} we put aA := a~j --. ax, and 
a~  = 1. For  linear functionals S and T on ~ '  we define their convolution as 
in Ref. 14 by 

S *  T(aA) = ~ S(aA~) T(aA 2) (A.1) 
AI~A2~A 

where Ai may be empty and where in the sum both {A1, A2} and {A2, A1} 
appear. This defines an associative, in general noncommutative, product. 
As in Ref. 14 for commutative states one has in the sense of formal power 
series 

S �9 T(e  xla~..,  e . . . .  ) = S (e  x~a~.., e ..... ) T(e  ~ . . .  e . . . .  ) 

If f ( z ) = Z p , z "  is an analytic function, one can define, 
n T .  := T * . . . *  T, 

f , ( T )  : = Z  p . T ,  

(A.2) 

with 

Theorem 2.1 of Ref. 14 also holds here, 

f,(T)(exlal...e . . . .  ) = f (  Z ( e X l a l . . .  CXnan)) 

For convergence properties see Corollaries 2.3 and 2.7 of Ref. 14. 

(A.3) 
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For a scalar- (or commutatNe-) valued state rn the 
functional m ~ is defined in Ref. 14 by 

m c := log,  m, rn := exp,  m c 

Equation (A.3) gives 

<exp(xl a I ) - - -  exp(x, a,) >c = log <exp(xl a l ) . . ,  exp(x, a,) ) 

<exp(xl a l ) . . ,  exp(x~ a,) > = exp <exp(x 1 al)---  exp(x,a,)  > ~ 

Hegerfeldt and Schulze 

cumulant 

(A.4) 

(A.5) 

(A.6) 

and one obtains <. ) and ( .  >c by differentiating at x = 0. Applying ~/~x l  

at xl = 0, one gets from Eq. (A.6), for a commuta t i ve  state, 

( a l e  x2a2.. .e  . . . .  ) = <a le  x2~2 . . . e  . . . .  )~ <e :'2~2 �9 �9 .e . . . .  ) (A.7) 

Note that this is a discrete version of Eq. (1.6). With Eq. (A.2) this implies 

rn(al .  ) = rn~(al �9 ) * rn (A.8) 

For a noncommutative state, rn c defined by Eq. (A.4) does not satisfy the 
cluster property, as seen from 

<12>~= <12>- �89  ><2> + <2><1>] 

A2. K-Cumulants  

For noncommutative states we use Eq. (A.7) or (A.8) to define an m K 
in the sense of van Kampen, 

m ( a  I . ) = :  mK(al .) * rn (A.9) 

or, equivalently, Eq. (A.7) with c replaced by K; from the latter, Eq. (3.7) 
follows. Now one cannot go back to Eq. (A.6), one only has the remnant of 
a logarithm. From Eq. (A.7) one immediately obtains Eq. (3.7), and with it 
one can also prove the cluster property, as in Section 3. Equation (A.9) 
together with Eq. (A.1) gives Eq. (1.7). Solving Eq. (A.9) for rn K, one gets 

m K ( a l . ) = r n ( a l . ) , m - l = m ( a l . ) ,  ~ (1--rn)t, (A.10) 
/ = 0  

where 1 is the trivial state, which vanishes on all products of a~-. From this 
and Eq. (A.1) one immediately obtains Eq. (3.9). To express rn in terms of 
m K, we use Eq. (A.1) and iterate Eq. (A.9). This gives, with A = {1 ..... n}, 

(aA> = ~ (aAl) K ---<aA,> K (A.11) 
A I U g . . . ~ A I = A  

min(Ajo . . .  ~ A I )  ~ A j  

where <az>  r: := 0. 
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In Eq. (A.10), al is always on the left, but a, is not always on the 
right. As a consequence of this asymmetry, m ~ is not a Hermitean 
functional if m is not commutative. An alternative cumulant m R, with a,  
always on the right, can therefore be defined by 

mR(a1 .. .a~) := [mK((al - - -a , )*)]*  

which satisfies, by Eq. (A.9), 

m ( . a , ) = m *  mR(.a,) 

These cumulants are adapted to the stochastic differential equation 

r )=uv 

(A.12) 

(A.13 

If ( a l  . - - a , )  K = 0 for n r 2, i.e., in the K-Gaussian case, then ( a  A ) 
a product of (aiaj); in particular, 

1S 

(1234) = ( 1 2 ) ( 3 4 )  + ( 1 3 ) ( 2 4 ) +  ( 1 4 ) ( 2 3 )  (A.14) 

Choosing a s =a2* and a4=a* ,  the lhs should be positive and afortiori 
Hermitian. The first two terms on the rhs are indeed positive. The third, 
however, is (ala*)(a2a*),  which is only Hermitian if the two factors 
commute. Hence, the K-Gaussian approximation to a state with noncom- 
mutative "second moments," i.e., retaining only second moments in 
Eq. (A.11), will not be positive and not a state. This is the underlying 
reason for the positivity problem in Section 3. 

A3. W - C u m u l a n t s  

We define a *-convolution by 

S * T(az):= ~ S(at1) T(az:) (A.15) 
11o12=1 

where I =  {1,..., n}; 11 = {1 ..... j} and I2 =1\11 are adjoining and possibly 
empty. This defines an associative product. In a more general context a 
related product was introduced in Ref. 15. We define m w - ( . ) w  by 

m =  1 + m w  * m (A.16) 

This is equivalent to Eq. (1.4), with ( a ~ ) W =  0. Iteration gives a Neumann 
series for m, 

m =  ~ (mW)~ (A.17) 
/ = 0  

822/51/3-4-25 
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or, equivalently, 

( a , )  = ~ ( a , , )  w . . .  ( a , , )  w (A.18) 
I 1 . . . . .  1 l = 1  

Solving Eq. (A.16) for m w gives 

m W = ~  ( - 1 ) '  X ( m - 1 ) ~  (A.19) 
l = 0  

from which Eq. (2.16) follows. 
It is not  difficult to show that  the W-Gauss ian  approximat ion  to a 

state, i.e., the linear functional built via Eq. (A.18) from the second 
moments  alone, is always positive and thus a state. It  can be shown that  
therefore no positivity problems arise with the W-Gauss ian  approximat ion  
to the integral equat ion in Section 2. 
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